Initial commit
This commit is contained in:
239
decoding_tf_analysis.py
Normal file
239
decoding_tf_analysis.py
Normal file
@@ -0,0 +1,239 @@
|
||||
import math
|
||||
import mne
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from mne.decoding import SlidingEstimator, cross_val_multiscore, Vectorizer, Scaler
|
||||
from mne.time_frequency import tfr_morlet
|
||||
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.pipeline import make_pipeline
|
||||
|
||||
from utils.file_utils import load_preprocessed_data, get_epochs
|
||||
from utils.plot_utils import plot_tf_cluster, plot_oscillation_bands
|
||||
|
||||
VERBOSE_LEVEL = 'CRITICAL'
|
||||
|
||||
|
||||
def events_to_labels(evts, events_dict, mask=None): # TODO Test schreiben
|
||||
"""
|
||||
Converts the event labels of epochs to class labels for classification
|
||||
:param evts: the event labels to be converted
|
||||
:param events_dict: a dictionary of event keys
|
||||
:param mask: an optional label mask with 4-entries, where:
|
||||
1. entry: 'face intact', 2. entry: 'car intact', 3. entry: 'face scrambled', 4. entry: 'face scrambled'
|
||||
If None the entries are [0,1,0,1] i.e. all faces are in class 0 and all cars are in class 1
|
||||
:return: The list of class labels
|
||||
"""
|
||||
events = evts.copy()
|
||||
if mask is None:
|
||||
mask = [0, 1, 0, 1]
|
||||
for i in range(len(events)):
|
||||
key = list(events_dict.keys())[list(events_dict.values()).index(events[i])]
|
||||
k = int(key.split(':')[1])
|
||||
if k < 41:
|
||||
events[i] = mask[0] # Face intact
|
||||
elif 40 < k < 81:
|
||||
events[i] = mask[1] # Car intact
|
||||
elif 100 < k < 141:
|
||||
events[i] = mask[2] # Face scrambled
|
||||
elif 140 < k < 181:
|
||||
events[i] = mask[3] # Car scrambled
|
||||
|
||||
return events
|
||||
|
||||
|
||||
def permutation_test(baseline, score, n_iter):
|
||||
"""
|
||||
An implementation of a permutation test for classification scores.
|
||||
:param baseline: The classification scores of the baseline, i.e. selection by chance
|
||||
:param score: The classification scores which are tested for significance
|
||||
:param n_iter: number of permutations
|
||||
:return: p-value
|
||||
"""
|
||||
all_data = np.concatenate((baseline, score))
|
||||
|
||||
# Base statistic. The statistic used here is the difference of means
|
||||
given_diff = np.mean(score) - np.mean(baseline)
|
||||
all_diffs = [given_diff]
|
||||
|
||||
# Permutation iterations
|
||||
for i in range(n_iter):
|
||||
# Create a permutation of indices and then use indices from index 0 to len(baseline) to get data for baseline.
|
||||
# Analogously for scores
|
||||
perm_indices = np.random.permutation(list(range(len(all_data))))
|
||||
mean_diff = np.mean(all_data[perm_indices[len(baseline):]]) - np.mean(all_data[perm_indices[:len(baseline)]])
|
||||
all_diffs.append(mean_diff)
|
||||
|
||||
p_val = len(np.where(np.asarray(all_diffs) >= given_diff)[0]) / (n_iter + 1)
|
||||
|
||||
return p_val
|
||||
|
||||
|
||||
def decoding(dataset, filename, compute_metric=True, mask=None):
|
||||
"""
|
||||
Runs decoding over time for all subjects
|
||||
|
||||
:param dataset: The dataset for which the decoding is done
|
||||
:param filename: filename of either the file from which the classifier scores will be loaded
|
||||
or to which they will be saved
|
||||
:param compute_metric: If True the classifier will be run, else the result will be loaded from a precomputed file
|
||||
:param mask: an optional label mask with 4-entries, where:
|
||||
1. entry: 'face intact', 2. entry: 'car intact', 3. entry: 'face scrambled', 4. entry: 'face scrambled'
|
||||
If None the entries are [0,1,0,1] i.e. all faces are in class 0 and all cars are in class 1
|
||||
"""
|
||||
if mask is None:
|
||||
mask = [0, 1, 0, 1]
|
||||
times = None
|
||||
time_scale = 1100
|
||||
metric = []
|
||||
p_values = []
|
||||
|
||||
if compute_metric:
|
||||
# Computes classifier scores for all subjects
|
||||
for i in range(1, 41):
|
||||
subj = "0" + str(i)
|
||||
if len(str(i)) == 1:
|
||||
subj = "0" + subj
|
||||
|
||||
# Load data
|
||||
raw = load_preprocessed_data(subj, dataset)
|
||||
epochs, events_dict = get_epochs(raw, picks=mne.pick_types(raw.info, eeg=True, eog=False))
|
||||
data = epochs.get_data()
|
||||
labels = events_to_labels(epochs.events[:, 2], events_dict, mask)
|
||||
|
||||
# Classify
|
||||
clf = make_pipeline(Scaler(epochs.info), Vectorizer(), LogisticRegression(solver='lbfgs'))
|
||||
time_decode = SlidingEstimator(clf)
|
||||
scores = cross_val_multiscore(time_decode, data, labels, cv=10, n_jobs=4)
|
||||
metric.append(np.mean(scores, axis=0))
|
||||
|
||||
if times is None:
|
||||
times = epochs.times
|
||||
np.save('cached_data/decoding_data/' + filename, metric)
|
||||
else:
|
||||
# Dummy time which is created according to epoch.times
|
||||
times = np.linspace(-0.09960938, 1, 1127)
|
||||
metric = np.load('cached_data/decoding_data/' + filename + '.npy')
|
||||
|
||||
# Compute index of time point 0
|
||||
index = math.floor((len(metric[0]) / time_scale) * 100)
|
||||
baseline = np.array(metric[:index]).flatten()
|
||||
plt.plot(np.linspace(-200, 1000, 1127), np.mean(metric, axis=0))
|
||||
plt.ylabel('Accuracy (%)')
|
||||
plt.xlabel('Time (ms)')
|
||||
plt.title('Mean Accuracy over Subjects for Faces vs. Cars')
|
||||
plt.show()
|
||||
|
||||
# Compute the permutation tests
|
||||
for t in range(len(metric[0][index:])):
|
||||
score_t = np.asarray(metric[:, t + index])
|
||||
p = permutation_test(baseline, score_t, 100)
|
||||
p_values.append(p)
|
||||
if t % 50 == 0:
|
||||
print(str(t) + " Out of " + str(len(metric[0][index:])))
|
||||
|
||||
plt.plot(times[index:], p_values)
|
||||
plt.ylabel('P-Value')
|
||||
plt.xlabel('Time (ms)')
|
||||
plt.title('P-Values for Faces vs. Cars')
|
||||
plt.show()
|
||||
|
||||
|
||||
def create_tfr(raw, condition, freqs, n_cycles, response='induced', baseline=None):
|
||||
"""
|
||||
Compute the time frequency representation (TFR) of data for a given condition via morlet wavelets
|
||||
:param raw: the data
|
||||
:param condition: the condition for which to compute the TFR. Given as a list of tuples of the form (stimulus, condition) # TODO ambiguous use of condition
|
||||
:param freqs: the frequencies for which to compute the TFR
|
||||
:param n_cycles: the number of cycles used by the morlet wavelets
|
||||
:param response: type of expected TFR. Can be total, induced or evoked. Default is induced
|
||||
:param baseline: baseline used to correct the power. A tuple of the form (start, end).
|
||||
Default is None and no baseline correction will be applid
|
||||
:return: The TFR or the given data for a given condition. Has type AverageTFR
|
||||
"""
|
||||
epochs, _ = get_epochs(raw, condition, tmin=-0.2, tmax=1)
|
||||
print(' ' + str(condition))
|
||||
|
||||
if response == 'total':
|
||||
print(' Power Total')
|
||||
power = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles, return_itc=False, n_jobs=4)
|
||||
elif response == 'induced':
|
||||
print(' Power Induced')
|
||||
power = tfr_morlet(epochs.subtract_evoked(), freqs=freqs, n_cycles=n_cycles, return_itc=False, n_jobs=4)
|
||||
else:
|
||||
print(' Power Evoked')
|
||||
power_total = tfr_morlet(epochs, freqs=freqs, n_cycles=n_cycles, return_itc=False, n_jobs=4)
|
||||
power_induced = tfr_morlet(epochs.subtract_evoked(), freqs=freqs, n_cycles=n_cycles, return_itc=False, n_jobs=4)
|
||||
power = mne.combine_evoked([power_total, power_induced], weights=[1, -1])
|
||||
# power.plot(picks='P7')
|
||||
power.apply_baseline(mode='ratio', baseline=baseline)
|
||||
# plot_oscillation_bands(power)
|
||||
# power.plot(picks='P7')
|
||||
return power
|
||||
|
||||
|
||||
def time_frequency(dataset, filename, compute_tfr=True):
|
||||
"""
|
||||
Runs time frequency analysis
|
||||
|
||||
:param dataset: The dataset for which the decoding is done
|
||||
:param filename: Filename of either the file from which the TFRs will be loaded
|
||||
or to which they will be saved
|
||||
:param compute_tfr: If True the TFRs will be created, else the TFRs will be loaded from a precomputed file
|
||||
"""
|
||||
# Parameters
|
||||
# Frequency space (from, to, steps) -> Control frequency resolution : Between num=50-80 good for 1-50Hz
|
||||
freqs = np.logspace(*np.log10([0.5, 50]), num=50) #
|
||||
# Number of cycles -> Controls time resolution ? At ~freqs/2 good for high frequency resolution
|
||||
n_cycles = freqs / 2 # 1 for high time resolution & freq smoothing, freqs/2 for high freq resolution & time smooth
|
||||
# Baseline -> Should not go post-stimulus, i.e. > 0 -> Best ist pre-stimulus (e.g. -400 to -200ms)
|
||||
baseline = [-0.5, 0]
|
||||
cond1 = []
|
||||
cond2 = []
|
||||
times = None
|
||||
|
||||
if compute_tfr:
|
||||
for i in range(1, 41):
|
||||
subj = "0" + str(i)
|
||||
if len(str(i)) == 1:
|
||||
subj = "0" + subj
|
||||
print("########## SUBJECT " + subj + " ##########")
|
||||
|
||||
# Load data
|
||||
raw = load_preprocessed_data(subj, dataset)
|
||||
raw.set_channel_types({'HEOG_left': 'eog', 'HEOG_right': 'eog', 'VEOG_lower': 'eog'})
|
||||
raw.set_montage('standard_1020', match_case=False)
|
||||
|
||||
# Create the two conditions we want to compare
|
||||
power_cond1 = create_tfr(raw, [('face', 'intact')], freqs, n_cycles, 'induced', (-0.2, 0))
|
||||
print(' CONDITION 1 LOADED')
|
||||
cond1.append(power_cond1)
|
||||
|
||||
power_cond2 = create_tfr(raw, [('face', 'scrambled'), ('car', None)], freqs, n_cycles, 'induced',
|
||||
(-0.2, 0))
|
||||
print(' CONDITION 2 LOADED')
|
||||
cond2.append(power_cond2)
|
||||
print(' DONE')
|
||||
|
||||
np.save('cached_data/tf_data/' + filename + '_cond1', cond1)
|
||||
np.save('cached_data/tf_data/' + filename + '_cond2', cond2)
|
||||
else:
|
||||
cond1 = np.load('cached_data/tf_data/' + filename + '_cond1.npy', allow_pickle=True).tolist()
|
||||
cond2 = np.load('cached_data/tf_data/' + filename + '_cond2.npy', allow_pickle=True).tolist()
|
||||
if times is None:
|
||||
times = cond1[0].times
|
||||
mne.grand_average(cond2).plot(picks=['P7'], vmin=-3, vmax=3, title='Grand Average P7')
|
||||
plot_oscillation_bands(mne.grand_average(cond1))
|
||||
plot_oscillation_bands(mne.grand_average(cond2))
|
||||
F, clusters, cluster_p_values, h0 = mne.stats.permutation_cluster_test(
|
||||
[mne.grand_average(cond1).data, mne.grand_average(cond2).data], n_jobs=4, verbose='INFO',
|
||||
seed=123)
|
||||
plot_tf_cluster(F, clusters, cluster_p_values, freqs, times)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
mne.set_log_level(verbose=VERBOSE_LEVEL)
|
||||
ds = 'N170'
|
||||
# decoding(ds, 'faces_vs_cars_100iters', False)
|
||||
time_frequency(ds, 'face_intact_vs_all_0.1_50hz_ncf2', False)
|
||||
134
erp_analysis.py
Normal file
134
erp_analysis.py
Normal file
@@ -0,0 +1,134 @@
|
||||
import mne
|
||||
import pandas as pd
|
||||
from scipy.stats import ttest_1samp, f_oneway
|
||||
|
||||
from utils.file_utils import load_preprocessed_data, get_epochs
|
||||
|
||||
VERBOSE_LEVEL = 'CRITICAL'
|
||||
|
||||
|
||||
def extract_erp_peak(raw, subject, stimulus, condition, channel):
|
||||
"""
|
||||
Extracts the erp peak for a given subject, stimulus and condition as a single value.
|
||||
|
||||
:param raw: The raw object, from which the epochs are generated
|
||||
:param subject: The subject for which the peak is extracted
|
||||
:param stimulus: The stimulus we look at: Either 'car' or 'face'
|
||||
:param condition: The condition of the stimulus: Either 'intact' or 'scrambled'
|
||||
:param channel: The currently selected channel, for which the erp_peak should be extracted
|
||||
:return: A dictionary conforming to the data frame format:
|
||||
{'subject_id': subject, 'stimulus': stimulus, 'condition': condition, 'peak': peak}
|
||||
"""
|
||||
# Epoch the data
|
||||
epochs, _ = get_epochs(raw, [(stimulus, condition)], picks=channel)
|
||||
# Check only for negative peaks, as only the channels P7,P07,P8,P08 are used
|
||||
ch, latency, peak = epochs.average().get_peak(tmin=0.13, tmax=0.2, mode='neg', return_amplitude=True)
|
||||
return {'subject_id': subject, 'stimulus': stimulus, 'condition': condition, 'peak': peak}
|
||||
|
||||
|
||||
def precompute_erp_df(dataset):
|
||||
"""
|
||||
This method generates a .csv file where the erp peaks for each stimulus-condition pair for each subject are saved
|
||||
:param dataset: The dataset for which the erp peaks are computed
|
||||
"""
|
||||
chs = ['P7', 'PO7', 'P8', 'PO8']
|
||||
events = [('face', 'intact'), ('face', 'scrambled'), ('car', 'intact'), ('car', 'scrambled')]
|
||||
|
||||
for ch in chs:
|
||||
df = pd.DataFrame(data={'subject_id': [], 'stimulus': [], 'condition': [], 'peak': []})
|
||||
for i in range(1, 41):
|
||||
subj = "0" + str(i)
|
||||
if len(str(i)) == 1:
|
||||
subj = "0" + subj
|
||||
# Load preprocessed .fif data files
|
||||
raw = load_preprocessed_data(subj, dataset)
|
||||
# Extract ERP peaks
|
||||
for ev in events:
|
||||
row = extract_erp_peak(raw, subj, ev[0], ev[1], ch)
|
||||
df = df.append(row, ignore_index=True)
|
||||
df.to_csv('cached_data/erp_peaks/erp_peaks_' + ch + '.csv')
|
||||
|
||||
|
||||
def create_peak_difference_feature(df, max_subj=40):
|
||||
"""
|
||||
Compute the difference of two N170 peaks for different conditions for all subjects.
|
||||
I.e. the difference of face(intact)-car(intact),face(scrambled)-car(scrambled),etc.
|
||||
:param max_subj: the maximum subject till which the features are computed.
|
||||
:param df: A pandas dataframe containing the peak information for all conditions and subjects
|
||||
:return: A pandas dataframe containing the peak-difference for multiple condition differences
|
||||
"""
|
||||
peak_diff_df = pd.DataFrame(
|
||||
data={'subject_id': [], 'mean_face': [], 'mean_car': [], 'peak_diff_overall': [], 'diff_intact': [],
|
||||
'diff_scrambled': [], 'diff_face': [], 'diff_fc_ci': [], 'diff_fi_rest': []})
|
||||
|
||||
for i in range(1, max_subj + 1):
|
||||
|
||||
subj = "0" + str(i)
|
||||
if len(str(i)) == 1:
|
||||
subj = "0" + subj
|
||||
sub_df = df.loc[df['subject_id'] == i]
|
||||
# difference of face and car (intact)
|
||||
diff_intact = sub_df.loc[df['condition'] == 'intact']['peak'].diff().to_numpy()[1]
|
||||
# difference of face and car (scrambled)
|
||||
diff_scrambled = sub_df.loc[df['condition'] == 'scrambled']['peak'].diff().to_numpy()[1]
|
||||
# Difference of Face intact and Face scrambled
|
||||
diff_face = sub_df.loc[df['stimulus'] == 'face']['peak'].diff().to_numpy()[1]
|
||||
# Difference of Face scrambled and Car intact
|
||||
diff_fs_ci = sub_df.loc[(df['stimulus'] == 'face') & (df['condition'] == 'scrambled')]['peak'].values[0] - \
|
||||
sub_df.loc[(df['stimulus'] == 'car') & (df['condition'] == 'intact')]['peak'].values[0]
|
||||
# Mean of face (intact) and face (scrambled)
|
||||
mean_face = sub_df.loc[df['stimulus'] == 'face']['peak'].mean()
|
||||
# Mean of car (intact) and car (scrambled)
|
||||
mean_car = sub_df.loc[df['stimulus'] == 'car']['peak'].mean()
|
||||
mean_rest = sub_df.loc[(df['stimulus'] == 'car') | ((df['stimulus'] == 'face') & (df['condition'] == 'scrambled'))]['peak'].mean()
|
||||
diff_fi_rest = sub_df.loc[df['stimulus'] == 'face']['peak'].values[0] - mean_rest
|
||||
# Difference of face (overall) and car (overall)
|
||||
diff = mean_face - mean_car
|
||||
peak_diff_df = peak_diff_df.append(
|
||||
{'subject_id': subj, 'mean_face': mean_face, 'mean_car': mean_car, 'peak_diff_overall': diff,
|
||||
'diff_intact': diff_intact, 'diff_scrambled': diff_scrambled, 'diff_face': diff_face,
|
||||
'diff_fc_ci': diff_fs_ci, 'diff_fi_rest': diff_fi_rest}, ignore_index=True)
|
||||
return peak_diff_df
|
||||
|
||||
|
||||
def analyze_erp(channels):
|
||||
"""
|
||||
Execute several statistical tests for different hypothesis, to analyze ERPs
|
||||
:param channels: The channels for which the tests are executed
|
||||
"""
|
||||
for c in channels:
|
||||
print("CHANNEL: " + c)
|
||||
erp_df = pd.read_csv('cached_data/erp_peaks/erp_peaks_' + c + '.csv', index_col=0)
|
||||
feature_df = create_peak_difference_feature(erp_df)
|
||||
# 1. H_a : There is a difference between the N170 peak of recognizing faces and cars
|
||||
# Run one-sample ttest against 0 mean
|
||||
stat, p_val = ttest_1samp(feature_df['peak_diff_overall'].to_numpy(), 0)
|
||||
print("Peak Difference Faces-Car (All)")
|
||||
print("P-Value=" + str(p_val))
|
||||
# 2. H_a : There is a difference between the peak difference of intact faces&cars,
|
||||
# to the peak difference of scrambled faces&cars
|
||||
# Run ANOVA for two samples. 1. Diff of intact faces&cars, 2. Diff of scrambled faces&cars
|
||||
stat, p_val = f_oneway(feature_df['diff_intact'].to_numpy(), feature_df['diff_scrambled'].to_numpy())
|
||||
print("Difference of peak-differences face-car (intact) vs. face-car (scrambled)")
|
||||
print("P-Value=" + str(p_val))
|
||||
# # 3. H_a : There is a difference in the peak-difference of face-car (intact)
|
||||
stat, p_val = ttest_1samp(feature_df['diff_intact'].to_numpy(), 0)
|
||||
print("Peak Difference Faces-Car (Intact)")
|
||||
print("P-Value=" + str(p_val))
|
||||
# # 4. H_a : There is a difference in the peak-difference of face-car (scrambled)
|
||||
stat, p_val = ttest_1samp(feature_df['diff_scrambled'].to_numpy(), 0)
|
||||
print("Peak Difference Faces-Car (Scrambled)")
|
||||
print("P-Value=" + str(p_val))
|
||||
# # 5. H_a : There is a Difference between Face (scrambled) and Face (intact) in the peak difference
|
||||
stat, p_val = ttest_1samp(feature_df['diff_face'].to_numpy(), 0)
|
||||
print("Peak Difference Face intact and scrambled")
|
||||
print("P-Value=" + str(p_val))
|
||||
stat, p_val = ttest_1samp(feature_df['diff_fi_rest'].to_numpy(), 0)
|
||||
print("Peak Difference Face intact and Rest")
|
||||
print("P-Value=" + str(p_val))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
mne.set_log_level(verbose=VERBOSE_LEVEL)
|
||||
# precompute_erp_df('N170')
|
||||
analyze_erp(['P7', 'PO7', 'P8', 'PO8'])
|
||||
110
plotting.py
Normal file
110
plotting.py
Normal file
@@ -0,0 +1,110 @@
|
||||
import mne
|
||||
from mne.preprocessing import create_eog_epochs
|
||||
|
||||
from mne_bids import BIDSPath, read_raw_bids
|
||||
from utils.ccs_eeg_utils import read_annotations_core
|
||||
from utils.file_utils import get_epochs
|
||||
|
||||
|
||||
def load_unprocessed_subject(subject, dataset):
|
||||
"""
|
||||
Load the eeg data of a subject
|
||||
:param subject: The subject of which the data will be loaded
|
||||
:param dataset: The dataset which will be loaded
|
||||
:return: the subject data
|
||||
"""
|
||||
bids_path = BIDSPath(subject=subject, task=dataset, session=dataset, datatype='eeg', suffix='eeg',
|
||||
root='Dataset\\' + dataset)
|
||||
raw = read_raw_bids(bids_path)
|
||||
# Add annotations
|
||||
read_annotations_core(bids_path, raw)
|
||||
return raw
|
||||
|
||||
|
||||
def filter_data(raw):
|
||||
"""
|
||||
Filter the data of a single subject with a bandpass filter.
|
||||
The lower bound ist 0.5Hz to compensate the slow drifts.
|
||||
The upper bound is 50Hz to compensate the high frequencies, including the power line spike at 60Hz
|
||||
:param raw: The data to be filtered
|
||||
:return: The filtered data
|
||||
"""
|
||||
raw.filter(0.5, 48, fir_design='firwin')
|
||||
return raw
|
||||
|
||||
|
||||
def plot_filter_data():
|
||||
ds = 'N170'
|
||||
for subj in ['014']:
|
||||
data = load_unprocessed_subject(subj, ds)
|
||||
data.load_data()
|
||||
# data.plot(n_channels=len(data.ch_names), block=True, scalings=40e-6)
|
||||
filter_data(data)
|
||||
fig = mne.viz.plot_raw_psd(data, fmax=80, average=True, show=False)
|
||||
fig.savefig("plots/frequency_filtered_subj_" + subj + "_48Hz.png")
|
||||
# data.plot(n_channels=len(data.ch_names), block=True, scalings=40e-6)
|
||||
|
||||
|
||||
def plot_filter_data_epoched(subj):
|
||||
ds = 'N170'
|
||||
data = load_unprocessed_subject(subj, ds)
|
||||
data.load_data()
|
||||
filter_data(data)
|
||||
get_epochs(data)[0].average().plot()
|
||||
|
||||
|
||||
def plot_cleaning():
|
||||
ds = 'N170'
|
||||
for subj in ['014']:
|
||||
data = load_unprocessed_subject(subj, ds)
|
||||
data.load_data()
|
||||
filter_data(data)
|
||||
folder = "Dataset\\" + ds + "\\sub-" + subj + "\\ses-" + ds + "\\eeg\\"
|
||||
filepath = folder + "sub-" + subj + "_task-" + ds
|
||||
print(filepath)
|
||||
ann = mne.read_annotations(filepath + "_" + "badannotations.csv")
|
||||
data.annotations.append(ann.onset, ann.duration, ann.description)
|
||||
data.plot(n_channels=len(data.ch_names), block=True, scalings=40e-6)
|
||||
|
||||
|
||||
def plot_ica():
|
||||
ds = 'N170'
|
||||
for subj in ['014']:
|
||||
data = load_unprocessed_subject(subj, ds)
|
||||
folder = "Dataset\\" + ds + "\\sub-" + subj + "\\ses-" + ds + "\\eeg\\"
|
||||
filepath = folder + "sub-" + subj + "_task-" + ds
|
||||
ann = mne.read_annotations(filepath + "_" + "badannotations.csv")
|
||||
data.annotations.append(ann.onset, ann.duration, ann.description)
|
||||
data.load_data()
|
||||
data.set_channel_types({'HEOG_left': 'eog', 'HEOG_right': 'eog', 'VEOG_lower': 'eog'})
|
||||
data.set_montage('standard_1020', match_case=False)
|
||||
ica_raw = data.copy()
|
||||
ica_raw.filter(l_freq=1, h_freq=None)
|
||||
|
||||
# Then run ICA
|
||||
ica = mne.preprocessing.ICA(method="fastica",
|
||||
random_state=123) # Use a random state for reproducable results #TODO Old Random state 123 or new one?
|
||||
ica.fit(ica_raw, verbose=True)
|
||||
ica_raw.load_data()
|
||||
# ica.plot_components(inst=ica_raw, ch_type='eeg', contours=0, topomap_args={'extrapolate': 'head'},
|
||||
# psd_args={'fmin': 0, 'fmax': 80})
|
||||
ica.plot_sources(ica_raw)
|
||||
ica.plot_properties(inst=ica_raw, dB=False, topomap_args={'extrapolate': 'head', 'contours': 0},
|
||||
psd_args={'fmin': 3, 'fmax': 50}, picks=['eeg'])
|
||||
|
||||
|
||||
def plot_joint_eog_plots():
|
||||
ds = 'N170'
|
||||
for subj in ['014']:
|
||||
data = load_unprocessed_subject(subj, ds)
|
||||
data.load_data()
|
||||
data.set_channel_types({'HEOG_left': 'eog', 'HEOG_right': 'eog', 'VEOG_lower': 'eog'})
|
||||
data.set_montage('standard_1020', match_case=False)
|
||||
eog_evoked = create_eog_epochs(data).average()
|
||||
eog_evoked.apply_baseline(baseline=(None, -0.2))
|
||||
eog_evoked.plot_joint()
|
||||
|
||||
|
||||
# plot_ica()
|
||||
# plot_joint_eog_plots()
|
||||
plot_filter_data_epoched('003')
|
||||
182
preprocessing_and_cleaning.py
Normal file
182
preprocessing_and_cleaning.py
Normal file
@@ -0,0 +1,182 @@
|
||||
import os
|
||||
import mne
|
||||
|
||||
from mne_bids import (BIDSPath, read_raw_bids)
|
||||
from utils.ccs_eeg_semesterproject import load_precomputed_badData, load_precomputed_ica
|
||||
from utils.ccs_eeg_utils import read_annotations_core
|
||||
|
||||
|
||||
def load_subject(subject, dataset):
|
||||
"""
|
||||
Load the eeg data of a subject
|
||||
:param subject: The subject of which the data will be loaded
|
||||
:param dataset: The dataset which will be loaded
|
||||
:return: the subject data
|
||||
"""
|
||||
bids_path = BIDSPath(subject=subject, task=dataset, session=dataset, datatype='eeg', suffix='eeg',
|
||||
root='Dataset\\' + dataset)
|
||||
raw = read_raw_bids(bids_path)
|
||||
# Add annotations
|
||||
read_annotations_core(bids_path, raw)
|
||||
return raw
|
||||
|
||||
|
||||
def load_given_preprocessing_data(subject, dataset):
|
||||
"""
|
||||
Loads given pre-processing information for a given subject.
|
||||
This is used for all subjects which were not manually preprocessed
|
||||
:param subject: The subject to load the data for
|
||||
:param dataset: The dataset currently viewed
|
||||
:return: The bad annotations, bad channels, ica object, bad ICs
|
||||
"""
|
||||
anno, bc = load_precomputed_badData("Dataset\\" + dataset + "\\", subject,
|
||||
dataset) # Loads annotations and bad channels
|
||||
ica, bad_comp = load_precomputed_ica("Dataset\\" + dataset + "\\", subject,
|
||||
dataset) # Loads ica and bad components
|
||||
return anno, bc, ica, bad_comp
|
||||
|
||||
|
||||
def save_subject(raw, subject, dataset):
|
||||
"""
|
||||
Save a raw object to a .fif file
|
||||
:param raw: the raw object to be saved
|
||||
:param subject: the subject, which the raw object belongs to
|
||||
:param dataset: the dataset currently viewed
|
||||
"""
|
||||
folder = "Dataset\\" + dataset + "\\sub-" + subject + "\\ses-" + dataset + "\\eeg\\"
|
||||
filepath = folder + "sub-" + subject + "_task-" + dataset
|
||||
raw.save(filepath + "_cleaned.fif", overwrite=True)
|
||||
|
||||
|
||||
def filter_data(raw):
|
||||
"""
|
||||
Filter the data of a single subject with a bandpass filter.
|
||||
The lower bound ist 0.5Hz to compensate the slow drifts.
|
||||
The upper bound is 50Hz to compensate the high frequencies, including the power line spike at 60Hz
|
||||
:param raw: The data to be filtered
|
||||
:return: The filtered data
|
||||
"""
|
||||
raw.filter(0.5, 48, fir_design='firwin')
|
||||
return raw
|
||||
|
||||
|
||||
def clean_data(raw, subject, dataset, cleaned=False):
|
||||
"""
|
||||
Clean the data of a single subject, meaning finding the bad segments and channels of a subject.
|
||||
If these were already found, they are loaded onto the data
|
||||
:param raw: the subject data
|
||||
:param subject: the subject which data will be viewed
|
||||
:param cleaned: If True the data was already viewed and the 'BAD_' annotations as well as the bad channels will be loaded
|
||||
:return: the bad channels
|
||||
"""
|
||||
channels = None
|
||||
folder = "Dataset\\" + dataset + "\\sub-" + subject + "\\ses-" + dataset + "\\eeg\\"
|
||||
filepath = folder + "sub-" + subject + "_task-" + dataset
|
||||
|
||||
# If nothing was marked yet, plot the data to mark bad segments
|
||||
if not cleaned:
|
||||
raw.plot(n_channels=len(raw.ch_names), block=True, scalings=40e-6)
|
||||
# Get indices of bad annotations
|
||||
bad_idx = [idx for (idx, annot) in enumerate(raw.annotations) if annot['description'] == "BAD_"]
|
||||
# If bad intervals were found save
|
||||
if bad_idx:
|
||||
raw.annotations[bad_idx].save(filepath + "_badannotations.csv")
|
||||
|
||||
if os.path.isfile(filepath + "_badannotations.csv"):
|
||||
annotations = mne.read_annotations(filepath + "_badannotations.csv")
|
||||
raw.annotations.append(annotations.onset, annotations.duration, annotations.description)
|
||||
|
||||
# Set the bad channels for each subject
|
||||
if subject == '001':
|
||||
channels = ['F8'] # Maybe also FP2?
|
||||
elif subject == '003':
|
||||
channels = []
|
||||
elif subject == '014':
|
||||
channels = []
|
||||
|
||||
return channels
|
||||
|
||||
|
||||
def run_ica(raw, dataset, subject, search='manual'):
|
||||
"""
|
||||
Runs Independent Component Analysis. Depending on the 'search' mode, it is either used to find bad ICs or to exclude
|
||||
bad ICs
|
||||
:param raw: the data to be preprocessed
|
||||
:param dataset: the dataset currently viewed
|
||||
:param subject: the subject currently viewed
|
||||
:param search: default value 'manual': The user views different plots for all ICs found
|
||||
'eog' : Uses the eog channels to find bad ICs
|
||||
'done' : Applies the bad ICs that were found
|
||||
"""
|
||||
# First filter the data to remove slow drifts - this is done with 1Hz, as proposed by the mne Tutorial at:
|
||||
# https://mne.tools/dev/auto_tutorials/preprocessing/plot_40_artifact_correction_ica.html#filtering-to-remove-slow-drifts
|
||||
ica_raw = raw.copy()
|
||||
ica_raw.filter(l_freq=1, h_freq=None)
|
||||
|
||||
# Then run ICA
|
||||
ica = mne.preprocessing.ICA(method="fastica", random_state=123) # Use a random state for reproducable results
|
||||
ica.fit(ica_raw, verbose=True)
|
||||
|
||||
if search == 'manual':
|
||||
ica_raw.load_data()
|
||||
# ica.plot_components(inst=ica_raw, ch_type='eeg', contours=0, topomap_args={'extrapolate': 'head'},
|
||||
# psd_args={'fmin': 0, 'fmax': 80})
|
||||
ica.plot_properties(inst=ica_raw, dB=False, topomap_args={'extrapolate': 'head', 'contours': 0},
|
||||
psd_args={'fmin': 0, 'fmax': 50}, picks=['eeg'])
|
||||
ica.plot_sources(ica_raw)
|
||||
elif search == 'eog':
|
||||
eog_indices, _ = ica.find_bads_eog(raw)
|
||||
ica.exclude = eog_indices
|
||||
print('BAD COMPONENTS VIA EOG: ' + str(eog_indices))
|
||||
ica.plot_overlay(ica_raw, exclude=eog_indices)
|
||||
elif search == 'done':
|
||||
exclude = None
|
||||
if subj == '001':
|
||||
exclude = [0, 1, 2, 4, 8, 14, 16, 25] # Through eog: 0,1
|
||||
elif subj == '003':
|
||||
exclude = [0, 2] # Through eog: 0, 2
|
||||
elif subj == '014':
|
||||
exclude = [0, 1, 9] # Through eog: 0,1
|
||||
# ica.plot_overlay(ica_raw, exclude=exclude) # Plot differences through exclude
|
||||
# ica.exclude = exclude
|
||||
# Apply ica to the raw object
|
||||
raw.load_data()
|
||||
# ica.plot_overlay(ica_raw, exclude=exclude)
|
||||
raw = ica.apply(raw, exclude=exclude)
|
||||
# Lastly save the ica to a file
|
||||
folder = "Dataset\\" + dataset + "\\sub-" + subject + "\\ses-" + dataset + "\\eeg\\"
|
||||
filepath = folder + "sub-" + subject + "_task-" + dataset
|
||||
ica.save(filepath + "-ica.fif")
|
||||
return raw
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
ds = 'N170'
|
||||
for i in range(1, 41):
|
||||
subj = "0" + str(i)
|
||||
if len(str(i)) == 1:
|
||||
subj = "0" + subj
|
||||
data = load_subject(subj, ds)
|
||||
# Load data into memory
|
||||
data.load_data()
|
||||
# Filter data with a bandpass filter
|
||||
filter_data(data)
|
||||
if subj in ["001", "003", "014"]:
|
||||
# Manual preprocessing
|
||||
# Clean the data
|
||||
b_ch = clean_data(data, subj, ds, True)
|
||||
# Run ICA
|
||||
data.set_channel_types({'HEOG_left': 'eog', 'HEOG_right': 'eog', 'VEOG_lower': 'eog'})
|
||||
data.set_montage('standard_1020', match_case=False)
|
||||
data = run_ica(data, ds, subj, 'done')
|
||||
else:
|
||||
# Provided cleaning and preprocessing information
|
||||
ann, b_ch, ica_pre, bad_component = load_given_preprocessing_data(subj, ds)
|
||||
data.annotations.append(ann.onset, ann.duration, ann.description)
|
||||
data = ica_pre.apply(data, exclude=bad_component)
|
||||
# Interpolate bad channels
|
||||
data.interpolate_bads(b_ch)
|
||||
# Re-Reference the data
|
||||
data_re = data.copy().set_eeg_reference('average')
|
||||
# Save preprocessed and cleaned data set
|
||||
save_subject(data_re, subj, ds)
|
||||
86
test/test.py
Normal file
86
test/test.py
Normal file
@@ -0,0 +1,86 @@
|
||||
import unittest
|
||||
|
||||
import mne
|
||||
import pandas as pd
|
||||
|
||||
from decoding_tf_analysis import events_to_labels, permutation_test
|
||||
from erp_analysis import create_peak_difference_feature
|
||||
from utils.file_utils import get_keys_for_events, get_epochs
|
||||
from pandas.testing import assert_frame_equal
|
||||
|
||||
|
||||
class TestFileUtils(unittest.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
# Load true values for keys
|
||||
with open('test_files/face.txt') as f:
|
||||
face = f.readlines()
|
||||
self.face = [x.strip() for x in face]
|
||||
with open('test_files/face_intact.txt') as f:
|
||||
face_intact = f.readlines()
|
||||
self.face_intact = [x.strip() for x in face_intact]
|
||||
with open('test_files/face_scrambled.txt') as f:
|
||||
face_scrambled = f.readlines()
|
||||
self.face_scrambled = [x.strip() for x in face_scrambled]
|
||||
|
||||
# Load true epochs
|
||||
self.raw = mne.io.read_raw_fif("..\\Dataset\\n170\\sub-001\\ses-n170\\eeg\\sub-001_task-n170_cleaned.fif")
|
||||
wanted_keys = get_keys_for_events("face", "intact")
|
||||
events, events_dict = mne.events_from_annotations(self.raw)
|
||||
events_dict_key = dict((k, events_dict[k]) for k in wanted_keys if k in events_dict)
|
||||
self.given = mne.Epochs(self.raw, events, events_dict_key, tmin=-0.2, tmax=0.5, reject_by_annotation=False,
|
||||
picks='P7')
|
||||
self.given.drop_bad()
|
||||
self.given.load_data()
|
||||
|
||||
def test_keys_for_events(self):
|
||||
# Test only for face key generation, as the rest is generated analogously
|
||||
self.assertEqual("stimulus", get_keys_for_events(stimulus=None, condition=None))
|
||||
self.assertEqual(self.face, get_keys_for_events(stimulus='face', condition=None))
|
||||
self.assertEqual(self.face_intact, get_keys_for_events(stimulus='face', condition='intact'))
|
||||
self.assertEqual(self.face_scrambled, get_keys_for_events(stimulus='face', condition='scrambled'))
|
||||
|
||||
def test_get_epochs(self):
|
||||
# Get a epoch to compare against
|
||||
epochs, key = get_epochs(self.raw, [("face", "intact")], picks='P7', tmin=-0.2, tmax=0.5)
|
||||
epochs.load_data()
|
||||
self.assertEqual(self.given, epochs)
|
||||
|
||||
|
||||
class TestERPAnalysis(unittest.TestCase):
|
||||
|
||||
def test_difference_features(self):
|
||||
# Check if the correct features are created
|
||||
subject_ids = [1, 1, 1, 1]
|
||||
stimuli = ['face', 'face', 'car', 'car']
|
||||
conditions = ['intact', 'scrambled', 'intact', 'scrambled']
|
||||
peaks = [1, 2, 3, 4]
|
||||
df = pd.DataFrame(data={'subject_id': subject_ids, 'stimulus': stimuli, 'condition': conditions,
|
||||
'peak': peaks})
|
||||
diff_df_true = pd.DataFrame(
|
||||
data={'subject_id': ['001'], 'mean_face': [1.5], 'mean_car': [3.5], 'peak_diff_overall': [-2.0],
|
||||
'diff_intact': [2.0], 'diff_scrambled': [2.0], 'diff_face': [1.0], 'diff_fc_ci': [-1.0],
|
||||
'diff_fi_rest': [-2.0]})
|
||||
diff_df = create_peak_difference_feature(df, 1)
|
||||
assert_frame_equal(diff_df_true, diff_df)
|
||||
|
||||
|
||||
class TestDecodingTFAnalysis(unittest.TestCase):
|
||||
def test_events_to_labels(self):
|
||||
# Only check for stimuli 1-40, 41-80, 101-140, 141-180 as no other stimuli are possible
|
||||
events_dict = {'stimulus:1': 1, 'stimulus:40': 2, 'stimulus:41': 3, 'stimulus:80': 4, 'stimulus:101': 5,
|
||||
'stimulus:140': 6, 'stimulus:141': 7, 'stimulus:180': 8}
|
||||
labels = events_to_labels([1, 2, 3, 4, 5, 6, 7, 8], events_dict, [0, 1, 2, 3])
|
||||
self.assertCountEqual([0, 0, 1, 1, 2, 2, 3, 3], labels)
|
||||
|
||||
def test_permutation_test(self):
|
||||
# Check permutation test
|
||||
p = permutation_test([0, 0, 0, 0], [0, 0, 0, 0], 100)
|
||||
self.assertEqual(1, p)
|
||||
p = permutation_test([0, 0, 0, 0, 0], [5, 10, 15, 10, 5], 100)
|
||||
self.assertGreater(0.05, p)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
mne.set_log_level(verbose='WARNING') # Avoid full console
|
||||
unittest.main()
|
||||
160
test/test_files/face.csv
Normal file
160
test/test_files/face.csv
Normal file
@@ -0,0 +1,160 @@
|
||||
stimulus:1
|
||||
stimulus:2
|
||||
stimulus:3
|
||||
stimulus:4
|
||||
stimulus:5
|
||||
stimulus:6
|
||||
stimulus:7
|
||||
stimulus:8
|
||||
stimulus:9
|
||||
stimulus:10
|
||||
stimulus:11
|
||||
stimulus:12
|
||||
stimulus:13
|
||||
stimulus:14
|
||||
stimulus:15
|
||||
stimulus:16
|
||||
stimulus:17
|
||||
stimulus:18
|
||||
stimulus:19
|
||||
stimulus:20
|
||||
stimulus:21
|
||||
stimulus:22
|
||||
stimulus:23
|
||||
stimulus:24
|
||||
stimulus:25
|
||||
stimulus:26
|
||||
stimulus:27
|
||||
stimulus:28
|
||||
stimulus:29
|
||||
stimulus:30
|
||||
stimulus:31
|
||||
stimulus:32
|
||||
stimulus:33
|
||||
stimulus:34
|
||||
stimulus:35
|
||||
stimulus:36
|
||||
stimulus:37
|
||||
stimulus:38
|
||||
stimulus:39
|
||||
stimulus:40
|
||||
stimulus:41
|
||||
stimulus:42
|
||||
stimulus:43
|
||||
stimulus:44
|
||||
stimulus:45
|
||||
stimulus:46
|
||||
stimulus:47
|
||||
stimulus:48
|
||||
stimulus:49
|
||||
stimulus:50
|
||||
stimulus:51
|
||||
stimulus:52
|
||||
stimulus:53
|
||||
stimulus:54
|
||||
stimulus:55
|
||||
stimulus:56
|
||||
stimulus:57
|
||||
stimulus:58
|
||||
stimulus:59
|
||||
stimulus:60
|
||||
stimulus:61
|
||||
stimulus:62
|
||||
stimulus:63
|
||||
stimulus:64
|
||||
stimulus:65
|
||||
stimulus:66
|
||||
stimulus:67
|
||||
stimulus:68
|
||||
stimulus:69
|
||||
stimulus:70
|
||||
stimulus:71
|
||||
stimulus:72
|
||||
stimulus:73
|
||||
stimulus:74
|
||||
stimulus:75
|
||||
stimulus:76
|
||||
stimulus:77
|
||||
stimulus:78
|
||||
stimulus:79
|
||||
stimulus:80
|
||||
stimulus:101
|
||||
stimulus:102
|
||||
stimulus:103
|
||||
stimulus:104
|
||||
stimulus:105
|
||||
stimulus:106
|
||||
stimulus:107
|
||||
stimulus:108
|
||||
stimulus:109
|
||||
stimulus:110
|
||||
stimulus:111
|
||||
stimulus:112
|
||||
stimulus:113
|
||||
stimulus:114
|
||||
stimulus:115
|
||||
stimulus:116
|
||||
stimulus:117
|
||||
stimulus:118
|
||||
stimulus:119
|
||||
stimulus:120
|
||||
stimulus:121
|
||||
stimulus:122
|
||||
stimulus:123
|
||||
stimulus:124
|
||||
stimulus:125
|
||||
stimulus:126
|
||||
stimulus:127
|
||||
stimulus:128
|
||||
stimulus:129
|
||||
stimulus:130
|
||||
stimulus:131
|
||||
stimulus:132
|
||||
stimulus:133
|
||||
stimulus:134
|
||||
stimulus:135
|
||||
stimulus:136
|
||||
stimulus:137
|
||||
stimulus:138
|
||||
stimulus:139
|
||||
stimulus:140
|
||||
stimulus:141
|
||||
stimulus:142
|
||||
stimulus:143
|
||||
stimulus:144
|
||||
stimulus:145
|
||||
stimulus:146
|
||||
stimulus:147
|
||||
stimulus:148
|
||||
stimulus:149
|
||||
stimulus:150
|
||||
stimulus:151
|
||||
stimulus:152
|
||||
stimulus:153
|
||||
stimulus:154
|
||||
stimulus:155
|
||||
stimulus:156
|
||||
stimulus:157
|
||||
stimulus:158
|
||||
stimulus:159
|
||||
stimulus:160
|
||||
stimulus:161
|
||||
stimulus:162
|
||||
stimulus:163
|
||||
stimulus:164
|
||||
stimulus:165
|
||||
stimulus:166
|
||||
stimulus:167
|
||||
stimulus:168
|
||||
stimulus:169
|
||||
stimulus:170
|
||||
stimulus:171
|
||||
stimulus:172
|
||||
stimulus:173
|
||||
stimulus:174
|
||||
stimulus:175
|
||||
stimulus:176
|
||||
stimulus:177
|
||||
stimulus:178
|
||||
stimulus:179
|
||||
stimulus:180
|
||||
|
80
test/test_files/face.txt
Normal file
80
test/test_files/face.txt
Normal file
@@ -0,0 +1,80 @@
|
||||
stimulus:1
|
||||
stimulus:2
|
||||
stimulus:3
|
||||
stimulus:4
|
||||
stimulus:5
|
||||
stimulus:6
|
||||
stimulus:7
|
||||
stimulus:8
|
||||
stimulus:9
|
||||
stimulus:10
|
||||
stimulus:11
|
||||
stimulus:12
|
||||
stimulus:13
|
||||
stimulus:14
|
||||
stimulus:15
|
||||
stimulus:16
|
||||
stimulus:17
|
||||
stimulus:18
|
||||
stimulus:19
|
||||
stimulus:20
|
||||
stimulus:21
|
||||
stimulus:22
|
||||
stimulus:23
|
||||
stimulus:24
|
||||
stimulus:25
|
||||
stimulus:26
|
||||
stimulus:27
|
||||
stimulus:28
|
||||
stimulus:29
|
||||
stimulus:30
|
||||
stimulus:31
|
||||
stimulus:32
|
||||
stimulus:33
|
||||
stimulus:34
|
||||
stimulus:35
|
||||
stimulus:36
|
||||
stimulus:37
|
||||
stimulus:38
|
||||
stimulus:39
|
||||
stimulus:40
|
||||
stimulus:101
|
||||
stimulus:102
|
||||
stimulus:103
|
||||
stimulus:104
|
||||
stimulus:105
|
||||
stimulus:106
|
||||
stimulus:107
|
||||
stimulus:108
|
||||
stimulus:109
|
||||
stimulus:110
|
||||
stimulus:111
|
||||
stimulus:112
|
||||
stimulus:113
|
||||
stimulus:114
|
||||
stimulus:115
|
||||
stimulus:116
|
||||
stimulus:117
|
||||
stimulus:118
|
||||
stimulus:119
|
||||
stimulus:120
|
||||
stimulus:121
|
||||
stimulus:122
|
||||
stimulus:123
|
||||
stimulus:124
|
||||
stimulus:125
|
||||
stimulus:126
|
||||
stimulus:127
|
||||
stimulus:128
|
||||
stimulus:129
|
||||
stimulus:130
|
||||
stimulus:131
|
||||
stimulus:132
|
||||
stimulus:133
|
||||
stimulus:134
|
||||
stimulus:135
|
||||
stimulus:136
|
||||
stimulus:137
|
||||
stimulus:138
|
||||
stimulus:139
|
||||
stimulus:140
|
||||
40
test/test_files/face_intact.txt
Normal file
40
test/test_files/face_intact.txt
Normal file
@@ -0,0 +1,40 @@
|
||||
stimulus:1
|
||||
stimulus:2
|
||||
stimulus:3
|
||||
stimulus:4
|
||||
stimulus:5
|
||||
stimulus:6
|
||||
stimulus:7
|
||||
stimulus:8
|
||||
stimulus:9
|
||||
stimulus:10
|
||||
stimulus:11
|
||||
stimulus:12
|
||||
stimulus:13
|
||||
stimulus:14
|
||||
stimulus:15
|
||||
stimulus:16
|
||||
stimulus:17
|
||||
stimulus:18
|
||||
stimulus:19
|
||||
stimulus:20
|
||||
stimulus:21
|
||||
stimulus:22
|
||||
stimulus:23
|
||||
stimulus:24
|
||||
stimulus:25
|
||||
stimulus:26
|
||||
stimulus:27
|
||||
stimulus:28
|
||||
stimulus:29
|
||||
stimulus:30
|
||||
stimulus:31
|
||||
stimulus:32
|
||||
stimulus:33
|
||||
stimulus:34
|
||||
stimulus:35
|
||||
stimulus:36
|
||||
stimulus:37
|
||||
stimulus:38
|
||||
stimulus:39
|
||||
stimulus:40
|
||||
40
test/test_files/face_scrambled.txt
Normal file
40
test/test_files/face_scrambled.txt
Normal file
@@ -0,0 +1,40 @@
|
||||
stimulus:101
|
||||
stimulus:102
|
||||
stimulus:103
|
||||
stimulus:104
|
||||
stimulus:105
|
||||
stimulus:106
|
||||
stimulus:107
|
||||
stimulus:108
|
||||
stimulus:109
|
||||
stimulus:110
|
||||
stimulus:111
|
||||
stimulus:112
|
||||
stimulus:113
|
||||
stimulus:114
|
||||
stimulus:115
|
||||
stimulus:116
|
||||
stimulus:117
|
||||
stimulus:118
|
||||
stimulus:119
|
||||
stimulus:120
|
||||
stimulus:121
|
||||
stimulus:122
|
||||
stimulus:123
|
||||
stimulus:124
|
||||
stimulus:125
|
||||
stimulus:126
|
||||
stimulus:127
|
||||
stimulus:128
|
||||
stimulus:129
|
||||
stimulus:130
|
||||
stimulus:131
|
||||
stimulus:132
|
||||
stimulus:133
|
||||
stimulus:134
|
||||
stimulus:135
|
||||
stimulus:136
|
||||
stimulus:137
|
||||
stimulus:138
|
||||
stimulus:139
|
||||
stimulus:140
|
||||
19
test/visual_sanity_checks.py
Normal file
19
test/visual_sanity_checks.py
Normal file
@@ -0,0 +1,19 @@
|
||||
from utils.file_utils import load_preprocessed_data, get_epochs
|
||||
|
||||
|
||||
def check_peaks():
|
||||
"""
|
||||
Sanity check for the "get_peaks" method
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
raw = load_preprocessed_data('002', 'N170')
|
||||
epochs, _ = get_epochs(raw, [('face', 'intact')], picks='P7')
|
||||
ch, latency, peak = epochs.average().get_peak(tmin=0.13, tmax=0.2, mode='neg', return_amplitude=True)
|
||||
import numpy as np
|
||||
plt.plot(epochs.times, np.squeeze(epochs.average().data.T))
|
||||
plt.vlines([0.13, 0.2], -0.00001, 0.00001, colors='r', linestyles='dotted')
|
||||
plt.vlines(latency, -0.00001, 0.00001, colors='gray', linestyles='dotted')
|
||||
plt.show()
|
||||
|
||||
|
||||
check_peaks()
|
||||
BIN
utils/__pycache__/ccs_eeg_semesterproject.cpython-37.pyc
Normal file
BIN
utils/__pycache__/ccs_eeg_semesterproject.cpython-37.pyc
Normal file
Binary file not shown.
BIN
utils/__pycache__/ccs_eeg_semesterproject.cpython-38.pyc
Normal file
BIN
utils/__pycache__/ccs_eeg_semesterproject.cpython-38.pyc
Normal file
Binary file not shown.
BIN
utils/__pycache__/ccs_eeg_utils.cpython-37.pyc
Normal file
BIN
utils/__pycache__/ccs_eeg_utils.cpython-37.pyc
Normal file
Binary file not shown.
BIN
utils/__pycache__/ccs_eeg_utils.cpython-38.pyc
Normal file
BIN
utils/__pycache__/ccs_eeg_utils.cpython-38.pyc
Normal file
Binary file not shown.
BIN
utils/__pycache__/file_utils.cpython-37.pyc
Normal file
BIN
utils/__pycache__/file_utils.cpython-37.pyc
Normal file
Binary file not shown.
BIN
utils/__pycache__/plot_utils.cpython-37.pyc
Normal file
BIN
utils/__pycache__/plot_utils.cpython-37.pyc
Normal file
Binary file not shown.
70
utils/ccs_eeg_semesterproject.py
Normal file
70
utils/ccs_eeg_semesterproject.py
Normal file
@@ -0,0 +1,70 @@
|
||||
import os
|
||||
import mne
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from mne_bids import (BIDSPath, read_raw_bids)
|
||||
|
||||
|
||||
def _get_filepath(bids_root, subject_id, task):
|
||||
bids_path = BIDSPath(subject=subject_id, task=task, session=task,
|
||||
datatype='eeg', suffix='eeg',
|
||||
root=bids_root)
|
||||
# this is not a bids-conform file format, but a derivate/extension. Therefore we have to hack a bit
|
||||
# Depending on path structure, this might push a warning.
|
||||
fn = os.path.splitext(bids_path.fpath.__str__())[0]
|
||||
assert (fn[-3:] == "eeg")
|
||||
fn = fn[0:-3]
|
||||
return fn
|
||||
|
||||
|
||||
def load_precomputed_ica(bids_root, subject_id, task):
|
||||
# returns ICA and badComponents (starting at component = 0).
|
||||
# Note the existance of add_ica_info in case you want to plot something.
|
||||
fn = _get_filepath(bids_root, subject_id, task) + 'ica'
|
||||
|
||||
# import the eeglab ICA. I used eeglab because the "amica" ICA is a bit more powerful than runica
|
||||
ica = mne.preprocessing.read_ica_eeglab(fn + '.set')
|
||||
# ica = custom_read_eeglab_ica(fn+'.set')
|
||||
# Potentially for plotting one might want to copy over the raw.info, but in this function we dont have access / dont want to load it
|
||||
# ica.info = raw.info
|
||||
ica._update_ica_names()
|
||||
badComps = np.loadtxt(fn + '.tsv', delimiter="\t")
|
||||
badComps -= 1 # start counting at 0
|
||||
|
||||
# if only a single component is in the file, we get an error here because it is an ndarray with n-dim = 0.
|
||||
if len(badComps.shape) == 0:
|
||||
badComps = [float(badComps)]
|
||||
return ica, badComps
|
||||
|
||||
|
||||
def add_ica_info(raw, ica):
|
||||
# This function exists due to a MNE bug: https://github.com/mne-tools/mne-python/issues/8581
|
||||
# In case you want to plot your ICA components, this function will generate a ica.info
|
||||
ch_raw = raw.info['ch_names']
|
||||
ch_ica = ica.ch_names
|
||||
|
||||
ix = [k for k, c in enumerate(ch_raw) if c in ch_ica and not c in raw.info['bads']]
|
||||
info = raw.info.copy()
|
||||
mne.io.pick.pick_info(info, ix, copy=False)
|
||||
ica.info = info
|
||||
|
||||
return ica
|
||||
|
||||
|
||||
def load_precomputed_badData(bids_root, subject_id, task):
|
||||
# return precomputed annotations and bad channels (first channel = 0)
|
||||
|
||||
fn = _get_filepath(bids_root, subject_id, task)
|
||||
print(fn)
|
||||
|
||||
tmp = pd.read_csv(fn + 'badSegments.csv')
|
||||
# print(tmp)
|
||||
annotations = mne.Annotations(tmp.onset, tmp.duration, tmp.description)
|
||||
# Unfortunately MNE assumes that csv files are in milliseconds and only txt files in seconds.. wth?
|
||||
# annotations = mne.read_annotations(fn+'badSegments.csv')
|
||||
badChannels = np.loadtxt(fn + 'badChannels.tsv', delimiter='\t')
|
||||
badChannels = badChannels.astype(int)
|
||||
badChannels -= 1 # start counting at 0
|
||||
|
||||
# badChannels = [int(b) for b in badChannels]
|
||||
return annotations, badChannels
|
||||
275
utils/ccs_eeg_utils.py
Normal file
275
utils/ccs_eeg_utils.py
Normal file
@@ -0,0 +1,275 @@
|
||||
from osfclient import cli
|
||||
import os
|
||||
from mne_bids.read import _from_tsv, _drop
|
||||
from mne_bids import (BIDSPath, read_raw_bids)
|
||||
import mne
|
||||
import numpy as np
|
||||
|
||||
import scipy.ndimage
|
||||
import scipy.signal
|
||||
from numpy import sin as sin
|
||||
|
||||
|
||||
def read_annotations_core(bids_path, raw):
|
||||
tsv = os.path.join(bids_path.directory, bids_path.update(suffix="events", extension=".tsv").basename)
|
||||
_handle_events_reading_core(tsv, raw)
|
||||
|
||||
|
||||
def _handle_events_reading_core(events_fname, raw):
|
||||
"""Read associated events.tsv and populate raw.
|
||||
Handle onset, duration, and description of each event.
|
||||
"""
|
||||
events_dict = _from_tsv(events_fname)
|
||||
|
||||
if ('value' in events_dict) and ('trial_type' in events_dict):
|
||||
events_dict = _drop(events_dict, 'n/a', 'trial_type')
|
||||
events_dict = _drop(events_dict, 'n/a', 'value')
|
||||
|
||||
descriptions = np.asarray([a + ':' + b for a, b in zip(events_dict["trial_type"], events_dict["value"])],
|
||||
dtype=str)
|
||||
|
||||
# Get the descriptions of the events
|
||||
elif 'trial_type' in events_dict:
|
||||
|
||||
# Drop events unrelated to a trial type
|
||||
events_dict = _drop(events_dict, 'n/a', 'trial_type')
|
||||
descriptions = np.asarray(events_dict['trial_type'], dtype=str)
|
||||
|
||||
# If we don't have a proper description of the events, perhaps we have
|
||||
# at least an event value?
|
||||
elif 'value' in events_dict:
|
||||
# Drop events unrelated to value
|
||||
events_dict = _drop(events_dict, 'n/a', 'value')
|
||||
descriptions = np.asarray(events_dict['value'], dtype=str)
|
||||
# Worst case, we go with 'n/a' for all events
|
||||
else:
|
||||
descriptions = 'n/a'
|
||||
# Deal with "n/a" strings before converting to float
|
||||
ons = [np.nan if on == 'n/a' else on for on in events_dict['onset']]
|
||||
dus = [0 if du == 'n/a' else du for du in events_dict['duration']]
|
||||
onsets = np.asarray(ons, dtype=float)
|
||||
durations = np.asarray(dus, dtype=float)
|
||||
# Keep only events where onset is known
|
||||
good_events_idx = ~np.isnan(onsets)
|
||||
onsets = onsets[good_events_idx]
|
||||
durations = durations[good_events_idx]
|
||||
descriptions = descriptions[good_events_idx]
|
||||
del good_events_idx
|
||||
# Add Events to raw as annotations
|
||||
annot_from_events = mne.Annotations(onset=onsets,
|
||||
duration=durations,
|
||||
description=descriptions,
|
||||
orig_time=None)
|
||||
raw.set_annotations(annot_from_events)
|
||||
return raw
|
||||
|
||||
|
||||
# taken from the osfclient tutorial https://github.com/ubcbraincircuits/osfclienttutorial
|
||||
class args:
|
||||
def __init__(self, project, username=None, update=True, force=False, destination=None, source=None, recursive=False,
|
||||
target=None, output=None, remote=None, local=None):
|
||||
self.project = project
|
||||
self.username = username
|
||||
self.update = update # applies to upload, clone, and fetch
|
||||
self.force = force # applies to fetch and upload
|
||||
# upload arguments:
|
||||
self.destination = destination
|
||||
self.source = source
|
||||
self.recursive = recursive
|
||||
# remove argument:
|
||||
self.target = target
|
||||
# clone argument:
|
||||
self.output = output
|
||||
# fetch arguments:
|
||||
self.remote = remote
|
||||
self.local = local
|
||||
|
||||
|
||||
def download_erpcore(task="MMN", subject=1, localpath="local/bids/"):
|
||||
project = "9f5w7" # after recent change they put everything as "sessions" in one big BIDS file
|
||||
|
||||
arguments = args(project) # project ID
|
||||
for extension in ["channels.tsv", "events.tsv", "eeg.fdt", "eeg.json", "eeg.set"]:
|
||||
targetpath = '/sub-{:03d}/ses-{}/eeg/sub-{:03d}_ses-{}_task-{}_{}'.format(subject, task, subject, task, task,
|
||||
extension)
|
||||
print("Downloading {}".format(targetpath))
|
||||
arguments.remote = "\\ERP_CORE_BIDS_Raw_Files/" + targetpath
|
||||
arguments.local = localpath + targetpath
|
||||
cli.fetch(arguments)
|
||||
|
||||
|
||||
def simulate_ICA(dims=4):
|
||||
A = [[-0.3, 0.2], [.2, 0.1]]
|
||||
sample_rate = 100.0
|
||||
nsamples = 1000
|
||||
t = np.arange(nsamples) / sample_rate
|
||||
|
||||
s = []
|
||||
|
||||
# boxcars
|
||||
s.append(np.mod(np.array(range(0, nsamples)), 250) > 125)
|
||||
# a triangle staircase + trend
|
||||
s.append((np.mod(np.array(range(0, nsamples)), 100) + np.array(range(0, nsamples)) * 0.05) / 100)
|
||||
if dims == 4:
|
||||
A = np.array([[.7, 0.3, 0.2, -0.5], [0.2, -0.5, -0.2, 0.3], [-.3, 0.1, 0, 0.2], [-0.5, -0.3, -0.2, 0.8]])
|
||||
|
||||
# some sinosoids
|
||||
s.append(np.cos(2 * np.pi * 0.5 * t) + 0.2 * np.sin(2 * np.pi * 2.5 * t + 0.1) + 0.2 * np.sin(
|
||||
2 * np.pi * 15.3 * t) + 0.1 * np.sin(2 * np.pi * 16.7 * t + 0.1) + 0.1 * np.sin(2 * np.pi * 23.45 * t + .8))
|
||||
# uniform noise
|
||||
s.append(0.2 * np.random.rand(nsamples))
|
||||
x = np.matmul(A, np.array(s))
|
||||
return x
|
||||
|
||||
|
||||
def spline_matrix(x, knots):
|
||||
# bah, spline-matrices are a pain to implement.
|
||||
# But package "patsy" with function "bs" crashed my notebook...
|
||||
# Anyway, knots define where the spline should be anchored. The default should work
|
||||
# X defines where the spline set should be evaluated.
|
||||
# e.g. call using: spline_matrix(np.linspace(0,0.95,num=100))
|
||||
import scipy.interpolate as si
|
||||
|
||||
x_tup = si.splrep(knots, knots, k=3)
|
||||
nknots = len(x_tup[0])
|
||||
x_i = np.empty((len(x), nknots - 4))
|
||||
for i in range(nknots - 4):
|
||||
vec = np.zeros(nknots)
|
||||
vec[i] = 1.0
|
||||
x_list = list(x_tup)
|
||||
x_list[1] = vec.tolist()
|
||||
x_i[:, i] = si.splev(x, x_list)
|
||||
return x_i
|
||||
|
||||
|
||||
def simulate_TF(signal=1, noise=True):
|
||||
# signal can be 1 (image), 2(chirp) or 3 (steps)
|
||||
import imageio
|
||||
|
||||
if signal == 2:
|
||||
im = imageio.imread('ex9_tf.png')
|
||||
|
||||
im = im[0:60, :, 3] - im[0:60, :, 1]
|
||||
# im = scipy.ndimage.zoom(im,[1,1])
|
||||
im = np.flip(im, axis=0)
|
||||
|
||||
# plt.imshow(im,origin='lower')
|
||||
|
||||
# sig = (scipy.fft.irfft(im.T,axis=1))
|
||||
|
||||
nov = 10;
|
||||
im.shape[0] * 0.5
|
||||
nperseg = 50;
|
||||
im.shape[0] - 1
|
||||
t, sig = scipy.signal.istft(im, fs=500, noverlap=nov, nperseg=nperseg)
|
||||
sig = sig / 300 # normalize
|
||||
elif signal == 3:
|
||||
sig = scipy.signal.chirp(t=np.arange(0, 10, 1 / 500), f0=1, f1=100, t1=2, method='linear', phi=90)
|
||||
elif signal == 1:
|
||||
|
||||
x = np.arange(0, 2, 1 / 500)
|
||||
sig_steps = np.concatenate([1.0 * sin(2 * np.pi * x * 50), 1.2 * sin(2 * np.pi * x * 55 + np.pi / 2),
|
||||
0.8 * sin(2 * np.pi * x * 125 + np.pi),
|
||||
1.0 * sin(2 * np.pi * x * 120 + 3 * np.pi / 2)])
|
||||
|
||||
sig = sig_steps
|
||||
if noise:
|
||||
sig = sig + 0.1 * np.std(sig) * np.random.randn(sig.shape[0])
|
||||
|
||||
return sig
|
||||
|
||||
|
||||
def get_TF_dataset(subject_id='002', bids_root="../local/bids"):
|
||||
bids_path = BIDSPath(subject=subject_id, task="P3", session="P3",
|
||||
datatype='eeg', suffix='eeg',
|
||||
root=bids_root)
|
||||
|
||||
raw = read_raw_bids(bids_path)
|
||||
read_annotations_core(bids_path, raw)
|
||||
# raw.pick_channels(["Cz"])#["Pz","Fz","Cz"])
|
||||
raw.load_data()
|
||||
raw.set_montage('standard_1020', match_case=False)
|
||||
|
||||
evts, evts_dict = mne.events_from_annotations(raw)
|
||||
wanted_keys = [e for e in evts_dict.keys() if "response" in e]
|
||||
evts_dict_stim = dict((k, evts_dict[k]) for k in wanted_keys if k in evts_dict)
|
||||
epochs = mne.Epochs(raw, evts, evts_dict_stim, tmin=-1, tmax=2)
|
||||
return epochs
|
||||
|
||||
|
||||
def get_classification_dataset(subject=1, typeInt=4):
|
||||
# TypeInt:
|
||||
# Task 1 (open and close left or right fist)
|
||||
# Task 2 (imagine opening and closing left or right fist)
|
||||
# Task 3 (open and close both fists or both feet)
|
||||
# Task 4 (imagine opening and closing both fists or both feet)
|
||||
assert (typeInt >= 1)
|
||||
assert (typeInt <= 4)
|
||||
from mne.io import concatenate_raws, read_raw_edf
|
||||
from mne.datasets import eegbci
|
||||
tmin, tmax = -1., 4.
|
||||
runs = [3, 7, 11]
|
||||
runs = [r + typeInt - 1 for r in runs]
|
||||
print("loading subject {} with runs {}".format(subject, runs))
|
||||
if typeInt <= 1:
|
||||
event_id = dict(left=2, right=3)
|
||||
else:
|
||||
event_id = dict(hands=2, feet=3)
|
||||
|
||||
raw_fnames = eegbci.load_data(subject, runs)
|
||||
raws = [read_raw_edf(f, preload=True) for f in raw_fnames]
|
||||
raw = concatenate_raws(raws)
|
||||
|
||||
raw.filter(7., 30., fir_design='firwin', skip_by_annotation='edge')
|
||||
|
||||
eegbci.standardize(raw) # set channel names
|
||||
montage = mne.channels.make_standard_montage('standard_1005')
|
||||
raw.set_montage(montage)
|
||||
raw.rename_channels(lambda x: x.strip('.'))
|
||||
events, _ = mne.events_from_annotations(raw, event_id=dict(T1=2, T2=3))
|
||||
|
||||
picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False,
|
||||
exclude='bads')
|
||||
|
||||
# Read epochs (train will be done only between 1 and 2s)
|
||||
# Testing will be done with a running classifier
|
||||
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks,
|
||||
baseline=None, preload=True)
|
||||
return (epochs)
|
||||
|
||||
|
||||
def ex8_simulateData(width=40, n_subjects=15, signal_mean=100, noise_between=30, noise_within=10, smooth_sd=4,
|
||||
rng_seed=43):
|
||||
# adapted and extended from https://mne.tools/dev/auto_tutorials/discussions/plot_background_statistics.html#sphx-glr-auto-tutorials-discussions-plot-background-statistics-py
|
||||
rng = np.random.RandomState(rng_seed)
|
||||
# For each "subject", make a smoothed noisy signal with a centered peak
|
||||
|
||||
X = noise_within * rng.randn(n_subjects, width, width)
|
||||
# Add three signals
|
||||
X[:, width // 6 * 2, width // 6 * 2] -= signal_mean / 3 * 3 + rng.randn(n_subjects) * noise_between
|
||||
X[:, width // 6 * 4, width // 6 * 4] += signal_mean / 3 * 2 + rng.randn(n_subjects) * noise_between
|
||||
X[:, width // 6 * 5, width // 6 * 5] += signal_mean / 3 * 2 + rng.randn(n_subjects) * noise_between
|
||||
# Spatially smooth with a 2D Gaussian kernel
|
||||
size = width // 2 - 1
|
||||
gaussian = np.exp(-(np.arange(-size, size + 1) ** 2 / float(smooth_sd ** 2)))
|
||||
for si in range(X.shape[0]):
|
||||
for ri in range(X.shape[1]):
|
||||
X[si, ri, :] = np.convolve(X[si, ri, :], gaussian, 'same')
|
||||
for ci in range(X.shape[2]):
|
||||
X[si, :, ci] = np.convolve(X[si, :, ci], gaussian, 'same')
|
||||
# X += 10 * rng.randn(n_subjects, width, width)
|
||||
return X
|
||||
|
||||
|
||||
def stc_plot2img(h, title="SourceEstimate", closeAfterwards=False, crop=True):
|
||||
h.add_text(0.1, 0.9, title, 'title', font_size=16)
|
||||
screenshot = h.screenshot()
|
||||
if closeAfterwards:
|
||||
h.close()
|
||||
|
||||
if crop:
|
||||
nonwhite_pix = (screenshot != 255).any(-1)
|
||||
nonwhite_row = nonwhite_pix.any(1)
|
||||
nonwhite_col = nonwhite_pix.any(0)
|
||||
screenshot = screenshot[nonwhite_row][:, nonwhite_col]
|
||||
return screenshot
|
||||
89
utils/file_utils.py
Normal file
89
utils/file_utils.py
Normal file
@@ -0,0 +1,89 @@
|
||||
import os
|
||||
import mne
|
||||
|
||||
|
||||
def load_bad_annotations(filepath, fileending="badSegments.csv"):
|
||||
"""
|
||||
Loads the annotations for bad segments
|
||||
:param filepath: The path to the file we want to load
|
||||
:param fileending: Depending if the subject, for which we load the annotations, was preprocessed manually,
|
||||
the ending of the filename will be different.
|
||||
The default are file endings of the given preprocessed annotations: "badSegments.csv"
|
||||
For the manual preprocessed annotations, the file endings are: "badannotations.csv"
|
||||
:return: The mne annotations
|
||||
"""
|
||||
if os.path.isfile(filepath + "_" + fileending):
|
||||
return mne.read_annotations(filepath + "_" + fileending)
|
||||
|
||||
|
||||
def load_preprocessed_data(subject, dataset):
|
||||
"""
|
||||
Load the raw object as well as the annotations of the preprocessed file
|
||||
:param subject: The subject, for which we want to load the raw object
|
||||
:param dataset: The currently viewed dataset
|
||||
:param selected_subjects: The manually preprocessed subjects
|
||||
:return: The raw object
|
||||
"""
|
||||
folder = "Dataset\\" + dataset + "\\sub-" + subject + "\\ses-" + dataset + "\\eeg\\"
|
||||
filepath = folder + "sub-" + subject + "_task-" + dataset
|
||||
raw = mne.io.read_raw_fif(filepath + "_cleaned.fif")
|
||||
return raw
|
||||
|
||||
|
||||
def get_keys_for_events(stimulus=None, condition=None):
|
||||
"""
|
||||
For a given stimulus and condition get all the event keys.
|
||||
:param stimulus: Either 'face' or 'car' or 'None' for no stimulus
|
||||
:param condition: Either 'intact' or 'scrambled' or 'None' for no condition
|
||||
:return: A list of keys or 'stimulus' if neither stimulus or condition was given
|
||||
"""
|
||||
if stimulus == 'face':
|
||||
if condition == 'intact':
|
||||
return ["stimulus:{}".format(k) for k in range(1, 41)]
|
||||
elif condition == 'scrambled':
|
||||
return ["stimulus:{}".format(k) for k in range(101, 141)]
|
||||
else: # All faces
|
||||
return ["stimulus:{}".format(k) for k in list(range(1, 41)) + list(range(101, 141))]
|
||||
elif stimulus == 'car':
|
||||
if condition == 'intact':
|
||||
return ["stimulus:{}".format(k) for k in range(41, 81)]
|
||||
elif condition == 'scrambled':
|
||||
return ["stimulus:{}".format(k) for k in range(141, 181)]
|
||||
else: # All cars
|
||||
return ["stimulus:{}".format(k) for k in list(range(41, 81)) + list(range(141, 181))]
|
||||
else: # If no stimulus is given
|
||||
if condition == 'intact':
|
||||
return ["stimulus:{}".format(k) for k in range(1, 41) and range(41, 81)]
|
||||
elif condition == 'scrambled':
|
||||
return ["stimulus:{}".format(k) for k in list(range(101, 141)) + list(range(141, 181))]
|
||||
else: # Every stimulus
|
||||
return "stimulus"
|
||||
|
||||
|
||||
def get_epochs(raw, conditions=None, picks=None, tmin=-0.1, tmax=1):
|
||||
"""
|
||||
Returns the epochs for a given dataset
|
||||
:param raw: the dataset
|
||||
:param conditions: A List of tuples, of the Form [(stimulus, condition), (stimulus,condition)]
|
||||
i.e. [('face',None), ('car', 'scrambled')] returns the epochs where the stimulus is face and the stim+condition is car+scrambled
|
||||
default is None, i.e. everything
|
||||
:param picks: a list. Additional criteria for picking the epochs, e.g. channels, etc.
|
||||
:param tmin: onset before the event
|
||||
:param tmax: end after the event
|
||||
:return:
|
||||
"""
|
||||
|
||||
events, events_dict = mne.events_from_annotations(raw)
|
||||
events_dict_key = {}
|
||||
if conditions is None:
|
||||
conditions = [(None, None)]
|
||||
|
||||
for condition in conditions:
|
||||
wanted_keys = get_keys_for_events(condition[0], condition[1])
|
||||
if wanted_keys == "stimulus":
|
||||
wanted_keys = [e for e in events_dict.keys() if "stimulus" in e]
|
||||
events_dict_key.update(dict((k, events_dict[k]) for k in wanted_keys if k in events_dict))
|
||||
epochs = mne.Epochs(raw, events, events_dict_key, tmin=tmin, tmax=tmax, reject_by_annotation=False, picks=picks)
|
||||
epochs.drop_bad()
|
||||
|
||||
return epochs, events_dict_key
|
||||
89
utils/plot_utils.py
Normal file
89
utils/plot_utils.py
Normal file
@@ -0,0 +1,89 @@
|
||||
import mne
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
from matplotlib import cm
|
||||
from matplotlib.colors import LogNorm
|
||||
|
||||
from utils.file_utils import load_preprocessed_data, get_keys_for_events
|
||||
|
||||
|
||||
def plot_grand_average(dataset):
|
||||
"""
|
||||
Plot the grand average ERPs
|
||||
:param dataset: the datset for which the grand average is computed
|
||||
"""
|
||||
evtss = [('face', 'intact'), ('face', 'scrambled'), ('car', 'intact'), ('car', 'scrambled')]
|
||||
chs = ['P7', 'PO7', 'P8', 'PO8']
|
||||
for ch in chs:
|
||||
fi = []
|
||||
fs = []
|
||||
ci = []
|
||||
cs = []
|
||||
for i in range(1, 41):
|
||||
subj = "0" + str(i)
|
||||
if len(str(i)) == 1:
|
||||
subj = "0" + subj
|
||||
# Load preprocessed .fif data files
|
||||
raw = load_preprocessed_data(subj, dataset)
|
||||
# Epoch the data
|
||||
for ev in evtss:
|
||||
wanted_keys = get_keys_for_events(ev[0], ev[1])
|
||||
events, events_dict = mne.events_from_annotations(raw)
|
||||
events_dict_key = dict((k, events_dict[k]) for k in wanted_keys if k in events_dict)
|
||||
epochs = mne.Epochs(raw, events, events_dict_key, tmin=-0.1, tmax=1, reject_by_annotation=True,
|
||||
picks=[ch])
|
||||
# Get the N170 peak
|
||||
# First construct a data frame
|
||||
if ev[0] == 'face' and ev[1] == 'intact':
|
||||
fi.append(epochs.average(picks=[ch]))
|
||||
elif ev[0] == 'face' and ev[1] == 'scrambled':
|
||||
fs.append(epochs.average(picks=[ch]))
|
||||
elif ev[0] == 'car' and ev[1] == 'intact':
|
||||
ci.append(epochs.average(picks=[ch]))
|
||||
elif ev[0] == 'car' and ev[1] == 'scrambled':
|
||||
cs.append(epochs.average(picks=[ch]))
|
||||
ga_fi = mne.grand_average(fi)
|
||||
ga_ci = mne.grand_average(ci)
|
||||
ga_fs = mne.grand_average(fs)
|
||||
ga_cs = mne.grand_average(cs)
|
||||
ga_fi.comment = 'Face Intact'
|
||||
ga_ci.comment = 'Car Intact'
|
||||
ga_fs.comment = 'Face Scrambled'
|
||||
ga_cs.comment = 'Car Scrambled'
|
||||
mne.viz.plot_compare_evokeds([ga_fi, ga_ci, ga_fs, ga_cs], picks=ch, colors=['blue', 'red', 'blue', 'red'],
|
||||
linestyles=['solid', 'solid', 'dotted', 'dotted'])
|
||||
|
||||
|
||||
def plot_tf_cluster(F, clusters, cluster_p_values, freqs, times):
|
||||
"""
|
||||
Plot teh F-Statistic values of permutation clusters with p-values <= 0.05 in color and > 0.05 in grey.
|
||||
|
||||
:param F: F-Statistics of the permutation clusters
|
||||
:param clusters: all permutation clusters
|
||||
:param cluster_p_values: p-values of the clusters
|
||||
:param freqs: frequency domain
|
||||
:param times: time domain
|
||||
"""
|
||||
good_c = np.nan * np.ones_like(F)
|
||||
for clu, p_val in zip(clusters, cluster_p_values):
|
||||
if p_val <= 0.05:
|
||||
good_c[clu] = F[clu]
|
||||
|
||||
bbox = [times[0], times[-1], freqs[0], freqs[-1]]
|
||||
plt.imshow(F, aspect='auto', origin='lower', cmap=cm.gray, extent=bbox, interpolation='None')
|
||||
a = plt.imshow(good_c, cmap=cm.RdBu_r, aspect='auto', origin='lower', extent=bbox, interpolation='None')
|
||||
plt.colorbar(a)
|
||||
plt.xlabel('Time (s)')
|
||||
plt.ylabel('Frequency (Hz)')
|
||||
plt.show()
|
||||
|
||||
|
||||
def plot_oscillation_bands(condition):
|
||||
fig, axis = plt.subplots(1, 5, figsize=(25, 5))
|
||||
condition.plot_topomap(baseline=(-0.2, 0), fmin=0, fmax=4, title='Delta', axes=axis[0], show=False, vmin=0, vmax=1.5, tmin=0, tmax=1)
|
||||
condition.plot_topomap(baseline=(-0.2, 0), fmin=4, fmax=8, title='Theta', axes=axis[1], show=False, vmin=0, vmax=0.7, tmin=0, tmax=1)
|
||||
condition.plot_topomap(baseline=(-0.2, 0), fmin=8, fmax=12, title='Alpha', axes=axis[2], show=False, vmin=-0.15, vmax=0.2, tmin=0, tmax=1)
|
||||
condition.plot_topomap(baseline=(-0.2, 0), fmin=13, fmax=30, title='Beta', axes=axis[3], show=False, vmin=-0.18, vmax=0.2, tmin=0, tmax=1)
|
||||
condition.plot_topomap(baseline=(-0.2, 0), fmin=30, fmax=45, title='Gamma', axes=axis[4], vmin=0, vmax=0.2, tmin=0, tmax=1)
|
||||
Reference in New Issue
Block a user