Initial commit

This commit is contained in:
2021-03-27 14:58:49 +01:00
commit fc4eec6ac7
20 changed files with 1613 additions and 0 deletions

275
utils/ccs_eeg_utils.py Normal file
View File

@@ -0,0 +1,275 @@
from osfclient import cli
import os
from mne_bids.read import _from_tsv, _drop
from mne_bids import (BIDSPath, read_raw_bids)
import mne
import numpy as np
import scipy.ndimage
import scipy.signal
from numpy import sin as sin
def read_annotations_core(bids_path, raw):
tsv = os.path.join(bids_path.directory, bids_path.update(suffix="events", extension=".tsv").basename)
_handle_events_reading_core(tsv, raw)
def _handle_events_reading_core(events_fname, raw):
"""Read associated events.tsv and populate raw.
Handle onset, duration, and description of each event.
"""
events_dict = _from_tsv(events_fname)
if ('value' in events_dict) and ('trial_type' in events_dict):
events_dict = _drop(events_dict, 'n/a', 'trial_type')
events_dict = _drop(events_dict, 'n/a', 'value')
descriptions = np.asarray([a + ':' + b for a, b in zip(events_dict["trial_type"], events_dict["value"])],
dtype=str)
# Get the descriptions of the events
elif 'trial_type' in events_dict:
# Drop events unrelated to a trial type
events_dict = _drop(events_dict, 'n/a', 'trial_type')
descriptions = np.asarray(events_dict['trial_type'], dtype=str)
# If we don't have a proper description of the events, perhaps we have
# at least an event value?
elif 'value' in events_dict:
# Drop events unrelated to value
events_dict = _drop(events_dict, 'n/a', 'value')
descriptions = np.asarray(events_dict['value'], dtype=str)
# Worst case, we go with 'n/a' for all events
else:
descriptions = 'n/a'
# Deal with "n/a" strings before converting to float
ons = [np.nan if on == 'n/a' else on for on in events_dict['onset']]
dus = [0 if du == 'n/a' else du for du in events_dict['duration']]
onsets = np.asarray(ons, dtype=float)
durations = np.asarray(dus, dtype=float)
# Keep only events where onset is known
good_events_idx = ~np.isnan(onsets)
onsets = onsets[good_events_idx]
durations = durations[good_events_idx]
descriptions = descriptions[good_events_idx]
del good_events_idx
# Add Events to raw as annotations
annot_from_events = mne.Annotations(onset=onsets,
duration=durations,
description=descriptions,
orig_time=None)
raw.set_annotations(annot_from_events)
return raw
# taken from the osfclient tutorial https://github.com/ubcbraincircuits/osfclienttutorial
class args:
def __init__(self, project, username=None, update=True, force=False, destination=None, source=None, recursive=False,
target=None, output=None, remote=None, local=None):
self.project = project
self.username = username
self.update = update # applies to upload, clone, and fetch
self.force = force # applies to fetch and upload
# upload arguments:
self.destination = destination
self.source = source
self.recursive = recursive
# remove argument:
self.target = target
# clone argument:
self.output = output
# fetch arguments:
self.remote = remote
self.local = local
def download_erpcore(task="MMN", subject=1, localpath="local/bids/"):
project = "9f5w7" # after recent change they put everything as "sessions" in one big BIDS file
arguments = args(project) # project ID
for extension in ["channels.tsv", "events.tsv", "eeg.fdt", "eeg.json", "eeg.set"]:
targetpath = '/sub-{:03d}/ses-{}/eeg/sub-{:03d}_ses-{}_task-{}_{}'.format(subject, task, subject, task, task,
extension)
print("Downloading {}".format(targetpath))
arguments.remote = "\\ERP_CORE_BIDS_Raw_Files/" + targetpath
arguments.local = localpath + targetpath
cli.fetch(arguments)
def simulate_ICA(dims=4):
A = [[-0.3, 0.2], [.2, 0.1]]
sample_rate = 100.0
nsamples = 1000
t = np.arange(nsamples) / sample_rate
s = []
# boxcars
s.append(np.mod(np.array(range(0, nsamples)), 250) > 125)
# a triangle staircase + trend
s.append((np.mod(np.array(range(0, nsamples)), 100) + np.array(range(0, nsamples)) * 0.05) / 100)
if dims == 4:
A = np.array([[.7, 0.3, 0.2, -0.5], [0.2, -0.5, -0.2, 0.3], [-.3, 0.1, 0, 0.2], [-0.5, -0.3, -0.2, 0.8]])
# some sinosoids
s.append(np.cos(2 * np.pi * 0.5 * t) + 0.2 * np.sin(2 * np.pi * 2.5 * t + 0.1) + 0.2 * np.sin(
2 * np.pi * 15.3 * t) + 0.1 * np.sin(2 * np.pi * 16.7 * t + 0.1) + 0.1 * np.sin(2 * np.pi * 23.45 * t + .8))
# uniform noise
s.append(0.2 * np.random.rand(nsamples))
x = np.matmul(A, np.array(s))
return x
def spline_matrix(x, knots):
# bah, spline-matrices are a pain to implement.
# But package "patsy" with function "bs" crashed my notebook...
# Anyway, knots define where the spline should be anchored. The default should work
# X defines where the spline set should be evaluated.
# e.g. call using: spline_matrix(np.linspace(0,0.95,num=100))
import scipy.interpolate as si
x_tup = si.splrep(knots, knots, k=3)
nknots = len(x_tup[0])
x_i = np.empty((len(x), nknots - 4))
for i in range(nknots - 4):
vec = np.zeros(nknots)
vec[i] = 1.0
x_list = list(x_tup)
x_list[1] = vec.tolist()
x_i[:, i] = si.splev(x, x_list)
return x_i
def simulate_TF(signal=1, noise=True):
# signal can be 1 (image), 2(chirp) or 3 (steps)
import imageio
if signal == 2:
im = imageio.imread('ex9_tf.png')
im = im[0:60, :, 3] - im[0:60, :, 1]
# im = scipy.ndimage.zoom(im,[1,1])
im = np.flip(im, axis=0)
# plt.imshow(im,origin='lower')
# sig = (scipy.fft.irfft(im.T,axis=1))
nov = 10;
im.shape[0] * 0.5
nperseg = 50;
im.shape[0] - 1
t, sig = scipy.signal.istft(im, fs=500, noverlap=nov, nperseg=nperseg)
sig = sig / 300 # normalize
elif signal == 3:
sig = scipy.signal.chirp(t=np.arange(0, 10, 1 / 500), f0=1, f1=100, t1=2, method='linear', phi=90)
elif signal == 1:
x = np.arange(0, 2, 1 / 500)
sig_steps = np.concatenate([1.0 * sin(2 * np.pi * x * 50), 1.2 * sin(2 * np.pi * x * 55 + np.pi / 2),
0.8 * sin(2 * np.pi * x * 125 + np.pi),
1.0 * sin(2 * np.pi * x * 120 + 3 * np.pi / 2)])
sig = sig_steps
if noise:
sig = sig + 0.1 * np.std(sig) * np.random.randn(sig.shape[0])
return sig
def get_TF_dataset(subject_id='002', bids_root="../local/bids"):
bids_path = BIDSPath(subject=subject_id, task="P3", session="P3",
datatype='eeg', suffix='eeg',
root=bids_root)
raw = read_raw_bids(bids_path)
read_annotations_core(bids_path, raw)
# raw.pick_channels(["Cz"])#["Pz","Fz","Cz"])
raw.load_data()
raw.set_montage('standard_1020', match_case=False)
evts, evts_dict = mne.events_from_annotations(raw)
wanted_keys = [e for e in evts_dict.keys() if "response" in e]
evts_dict_stim = dict((k, evts_dict[k]) for k in wanted_keys if k in evts_dict)
epochs = mne.Epochs(raw, evts, evts_dict_stim, tmin=-1, tmax=2)
return epochs
def get_classification_dataset(subject=1, typeInt=4):
# TypeInt:
# Task 1 (open and close left or right fist)
# Task 2 (imagine opening and closing left or right fist)
# Task 3 (open and close both fists or both feet)
# Task 4 (imagine opening and closing both fists or both feet)
assert (typeInt >= 1)
assert (typeInt <= 4)
from mne.io import concatenate_raws, read_raw_edf
from mne.datasets import eegbci
tmin, tmax = -1., 4.
runs = [3, 7, 11]
runs = [r + typeInt - 1 for r in runs]
print("loading subject {} with runs {}".format(subject, runs))
if typeInt <= 1:
event_id = dict(left=2, right=3)
else:
event_id = dict(hands=2, feet=3)
raw_fnames = eegbci.load_data(subject, runs)
raws = [read_raw_edf(f, preload=True) for f in raw_fnames]
raw = concatenate_raws(raws)
raw.filter(7., 30., fir_design='firwin', skip_by_annotation='edge')
eegbci.standardize(raw) # set channel names
montage = mne.channels.make_standard_montage('standard_1005')
raw.set_montage(montage)
raw.rename_channels(lambda x: x.strip('.'))
events, _ = mne.events_from_annotations(raw, event_id=dict(T1=2, T2=3))
picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False,
exclude='bads')
# Read epochs (train will be done only between 1 and 2s)
# Testing will be done with a running classifier
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks,
baseline=None, preload=True)
return (epochs)
def ex8_simulateData(width=40, n_subjects=15, signal_mean=100, noise_between=30, noise_within=10, smooth_sd=4,
rng_seed=43):
# adapted and extended from https://mne.tools/dev/auto_tutorials/discussions/plot_background_statistics.html#sphx-glr-auto-tutorials-discussions-plot-background-statistics-py
rng = np.random.RandomState(rng_seed)
# For each "subject", make a smoothed noisy signal with a centered peak
X = noise_within * rng.randn(n_subjects, width, width)
# Add three signals
X[:, width // 6 * 2, width // 6 * 2] -= signal_mean / 3 * 3 + rng.randn(n_subjects) * noise_between
X[:, width // 6 * 4, width // 6 * 4] += signal_mean / 3 * 2 + rng.randn(n_subjects) * noise_between
X[:, width // 6 * 5, width // 6 * 5] += signal_mean / 3 * 2 + rng.randn(n_subjects) * noise_between
# Spatially smooth with a 2D Gaussian kernel
size = width // 2 - 1
gaussian = np.exp(-(np.arange(-size, size + 1) ** 2 / float(smooth_sd ** 2)))
for si in range(X.shape[0]):
for ri in range(X.shape[1]):
X[si, ri, :] = np.convolve(X[si, ri, :], gaussian, 'same')
for ci in range(X.shape[2]):
X[si, :, ci] = np.convolve(X[si, :, ci], gaussian, 'same')
# X += 10 * rng.randn(n_subjects, width, width)
return X
def stc_plot2img(h, title="SourceEstimate", closeAfterwards=False, crop=True):
h.add_text(0.1, 0.9, title, 'title', font_size=16)
screenshot = h.screenshot()
if closeAfterwards:
h.close()
if crop:
nonwhite_pix = (screenshot != 255).any(-1)
nonwhite_row = nonwhite_pix.any(1)
nonwhite_col = nonwhite_pix.any(0)
screenshot = screenshot[nonwhite_row][:, nonwhite_col]
return screenshot